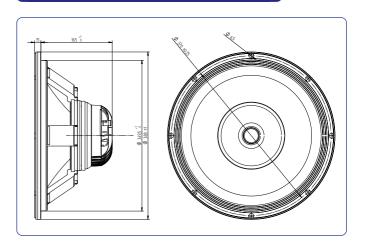


15CXA400Nd COAXIAL TRANSDUCER

KEY FEATURES

- 15" woofer with 4" voice coil and 2,8" voice coil compression driver
- Program power: 800 W LF / 180 W HF
- Sensitivity: 98 dB LF and 105 dB HF
- Low weight and compact common magnet system design
- · Demodulating rings in LF and HF units
- Composite Titanium/Mylar diaphragm
- Waterproof LF cone
- 60° coverage horn for HF dispersion control

TECHNICAL SPECIFICATIONS


Nominal diameter (LF) Rated impedance (LF/HF) Minimum impedance (LF/HF) Power capacity* (LF/HF) Program power (LF/HF) Sensitivity (LF/HF) Frequency range Recom. HF crossover	$\begin{array}{c} 381 \text{ mm} & 15 \text{ in} \\ & 8 / 16 \Omega \\ & 6,6 \Omega \\ & 400 / 90 W_{\text{AES}} \\ & 800 / 180 W \\ 2,83v \textcircled{@} 1m \textcircled{@} 2\pi \\ & 35 - 20.000 \text{Hz} \\ 1,5 \text{kHz or higher} \\ & (12 \text{dB/oct min slope}) \end{array}$
Voice coil diameter Magnetic assembly weight BL factor Moving mass Voice coil length Air gap height X _{damage} (peak to peak)	101,6 mm 4 in 4,2 kg 9,26 lb 19,04 N/A 0,084 kg 16 mm 9 mm 28 mm

THIELE-SMALL PARAMETERS**

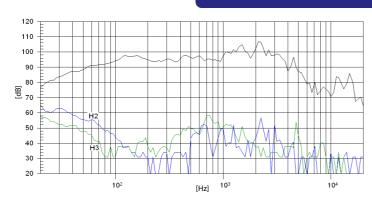
Resonant frequency, f _s	40 Hz
D.C. Voice coil resistance, R _e	6,6 Ω
Mechanical Quality Factor, Q _{ms}	4,37
Electrical Quality Factor, Q _{es}	0,39
Total Quality Factor, Q _{ts}	0,36
Equivalent Air Volume to C _{ms} , V _{as}	196 I
Mechanical Compliance, C _{ms}	181 μm / N
Mechanical Resistance, R _{ms}	4,91 kg / s
Efficiency, η ₀	3,3 %
Effective Surface Area, S _d	0,088 m ²
Maximum Displacement, X _{max} ***	6 mm
Displacement Volume, V _d	350 cm ³
Voice Coil Inductance, L _e @ 1 kHz	0,9 mH

DIMENSION DRAWINGS

MOUNTING INFORMATION

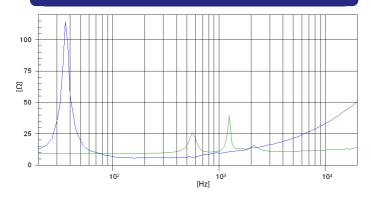
Overall diameter Bolt circle diameter	388 mm 370 mm	15,28 in 14,57 in
Baffle cutout diameter:		,
- Front mount - Rear mount	349,5 mm 360 mm	13,76 in 14,17 in
Depth	180 mm	7,09 in
Volume displaced by driver	7 I	0,25 ft ³
Net weight	7,22 kg	15,92 lb
Shipping weight	8,10 kg	17,86 lb

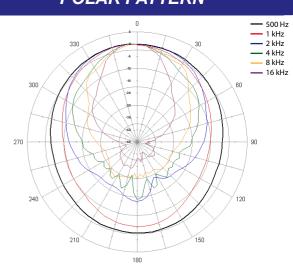
Notes:


- * The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- *** The X_{max} is calculated as $(L_{VC}$ $H_{ag})/2$ + $(H_{ag}/3,5)$, where L_{VC} is the voice coil length and H_{ag} is the air gap height.

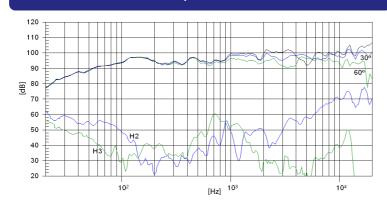
15CXA400Nd

COAXIAL TRANSDUCER


FREQUENCY RESPONSE AND DISTORTION



Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m


FREE AIR IMPEDANCE CURVE

FILTERED FREQUENCY RESPONSE

Note: Filtered frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m with

beyma //

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain)

- Tel.: (34) 96 130 13 75 - Fax: (34) 96 130 15 07 - http://www.beyma.com - E-mail: beyma@beyma.com -